Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3537, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322000

RESUMO

The SARS-CoV-2 Omicron variant evades most currently approved neutralizing antibodies (nAbs) and caused drastic decrease of plasma neutralizing activity elicited by vaccination or prior infection, urging the need for the development of pan-variant antivirals. Breakthrough infection induces a hybrid immunological response with potentially broad, potent and durable protection against variants, therefore, convalescent plasma from breakthrough infection may provide a broadened repertoire for identifying elite nAbs. We performed single-cell RNA sequencing (scRNA-seq) and BCR sequencing (scBCR-seq) of B cells from BA.1 breakthrough-infected patients who received 2 or 3 previous doses of inactivated vaccine. Elite nAbs, mainly derived from the IGHV2-5 and IGHV3-66/53 germlines, showed potent neutralizing activity across Wuhan-Hu-1, Delta, Omicron sublineages BA.1 and BA.2 at picomolar NT50 values. Cryo-EM analysis revealed diverse modes of spike recognition and guides the design of cocktail therapy. A single injection of paired antibodies cocktail provided potent protection in the K18-hACE2 transgenic female mouse model of SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Camundongos , SARS-CoV-2/genética , Infecções Irruptivas , Soroterapia para COVID-19 , Anticorpos Neutralizantes , Camundongos Transgênicos , Anticorpos Antivirais
2.
J Virol ; 97(5): e0045923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37097154

RESUMO

Numerous studies have illustrated that the Seneca Valley virus (SVV) shows sufficient oncolytic efficacy targeting small cell lung cancer (SCLC). However, the therapeutics of nonsmall cell lung carcinoma (NSCLC, accounts for 85% of lung cancer cases) using oncolytic virus have been resisting due to the filtration of neutralizing antibody and limited reproduction capacity. Here, we employed structural biology and reverse genetics to optimize novel oncolytic SVV mutants (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related variant SVV-S177A/P60S) with increased infectivity and lower immunogenicity. The results of the NSCLC-bearing athymic mouse model demonstrated that wild-type (wt) SVV-HB extended the median overall survival (mOS) from 11 days in the PBS group to 19 days. Notably, the newly discovered mutations significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort. Taken together, we present a structure-guided genetic modification strategy for oncolytic SVV optimization and provide a candidate for developing oncolytic viral therapy against nonsensitive NSCLC. IMPORTANCE Nonsmall cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases (more than 1.85 million cases with 1.48 million deaths in 2020). In the present study, two novel oncolytic SVV mutants modified based on structural biology and reverse genetics (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related mutant SVV-S177A/P60S) with increased infectivity or lower immunogenicity significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort in the NSCLC-bearing athymic mouse model, which may provide the direction for modifying SVV to improve the effect of oncolysis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Picornaviridae , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Pulmão , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos Nus , Picornaviridae/genética
4.
Nat Chem Biol ; 18(9): 972-980, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35739357

RESUMO

Ubiquitination-dependent histone crosstalk plays critical roles in chromatin-associated processes and is highly associated with human diseases. Mechanism studies of the crosstalk have been of the central focus. Here our study on the crosstalk between H2BK34ub and Dot1L-catalyzed H3K79me suggests a novel mechanism of ubiquitination-induced nucleosome distortion to stimulate the activity of an enzyme. We determined the cryo-electron microscopy structures of Dot1L-H2BK34ub nucleosome complex and the H2BK34ub nucleosome alone. The structures reveal that H2BK34ub induces an almost identical orientation and binding pattern of Dot1L on nucleosome as H2BK120ub, which positions Dot1L for the productive conformation through direct ubiquitin-enzyme contacts. However, H2BK34-anchored ubiquitin does not directly interact with Dot1L as occurs in the case of H2BK120ub, but rather induces DNA and histone distortion around the modified site. Our findings establish the structural framework for understanding the H2BK34ub-H3K79me trans-crosstalk and highlight the diversity of mechanisms for histone ubiquitination to activate chromatin-modifying enzymes.


Assuntos
Histonas , Nucleossomos , Cromatina , Microscopia Crioeletrônica , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Ubiquitina/metabolismo , Ubiquitinação
5.
J Virol ; 95(24): e0130821, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586859

RESUMO

Foot-and-mouth disease virus (FMDV) exhibits broad antigenic diversity with poor intraserotype cross-neutralizing activity. Studies of the determinant involved in this diversity are essential for the development of broadly protective vaccines. In this work, we isolated a bovine antibody, designated R55, that displays cross-reaction with both FMDV A/AF/72 (hereafter named FMDV-AAF) and FMDV A/WH/09 (hereafter named FMDV-AWH) but only has a neutralizing effect on FMDV-AWH. Near-atomic resolution structures of FMDV-AAF-R55 and FMDV-AWH-R55 show that R55 engages the capsids of both FMDV-AAF and FMDV-AWH near the icosahedral 3-fold axis and binds to the ßB and BC/HI-loops of VP2 and to the B-B knob of VP3. The common interaction residues are highly conserved, which is the major determinant for cross-reaction with both FMDV-AAF and FMDV-AWH. In addition, the cryo-EM structure of the FMDV-AWH-R55 complex also shows that R55 binds to VP3E70 located at the VP3 BC-loop in an adjacent pentamer, which enhances the acid and thermal stabilities of the viral capsid. This may prevent capsid dissociation and genome release into host cells, eventually leading to neutralization of the viral infection. In contrast, R55 binds only to the FMDV-AAF capsid within one pentamer due to the VP3E70G variation, which neither enhances capsid stability nor neutralizes FMDV-AAF infection. The VP3E70G mutation is the major determinant involved in the neutralizing differences between FMDV-AWH and FMDV-AAF. The crucial amino acid VP3E70 is a key component of the neutralizing epitopes, which may aid in the development of broadly protective vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious and economically devastating disease in cloven-hoofed animals, and neutralizing antibodies play critical roles in the defense against viral infections. Here, we isolated a bovine antibody (R55) using the single B cell antibody isolation technique. Enzyme-linked immunosorbent assays (ELISA) and virus neutralization tests (VNT) showed that R55 displays cross-reactions with both FMDV-AWH and FMDV-AAF but only has a neutralizing effect on FMDV-AWH. Cryo-EM structures, fluorescence-based thermal stability assays and acid stability assays showed that R55 engages the capsid of FMDV-AWH near the icosahedral 3-fold axis and informs an interpentamer epitope, which overstabilizes virions to hinder capsid dissociation to release the genome, eventually leading to neutralization of viral infection. The crucial amino acid VP3E70 forms a key component of neutralizing epitopes, and the determination of the VP3E70G mutation involved in the neutralizing differences between FMDV-AWH and FMDV-AAF could aid in the development of broadly protective vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Animais , Anticorpos Antivirais/isolamento & purificação , Variação Antigênica , Sítios de Ligação de Anticorpos , Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Bovinos , Epitopos , Testes de Neutralização
6.
PLoS Pathog ; 17(4): e1009507, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33909694

RESUMO

The development of a universal vaccine against foot-and-mouth disease virus (FMDV) is hindered by cross-serotype antigenic diversity and by a lack of knowledge regarding neutralization of the virus in natural hosts. In this study, we isolated serotype O-specific neutralizing antibodies (NAbs) (F145 and B77) from recovered natural bovine hosts by using the single B cell antibody isolation technique. We also identified a serotype O/A cross-reacting NAb (R50) and determined virus-NAb complex structures by cryo-electron microscopy at near-atomic resolution. F145 and B77 were shown to engage the capsid of FMDV-O near the icosahedral threefold axis, binding to the BC/HI-loop of VP2. In contrast, R50 engages the capsids of both FMDV-O and FMDV-A between the 2- and 5-fold axes and binds to the BC/EF/GH-loop of VP1 and to the GH-loop of VP3 from two adjacent protomers, revealing a previously unknown antigenic site. The cross-serotype neutralizing epitope recognized by R50 is highly conserved among serotype O/A. These findings help to elucidate FMDV neutralization by natural hosts and provide epitope information for the development of a universal vaccine for cross-serotype protection against FMDV.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/virologia , Animais , Variação Antigênica , Capsídeo/imunologia , Bovinos , Microscopia Crioeletrônica/veterinária , Epitopos/imunologia , Vírus da Febre Aftosa/ultraestrutura , Sorogrupo
7.
Nat Commun ; 10(1): 3760, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434885

RESUMO

Adeno-associated virus (AAV) receptor (AAVR) is an essential receptor for the entry of multiple AAV serotypes with divergent rules; however, the mechanism remains unclear. Here, we determine the structures of the AAV1-AAVR and AAV5-AAVR complexes, revealing the molecular details by which PKD1 recognizes AAV5 and PKD2 is solely engaged with AAV1. PKD2 lies on the plateau region of the AAV1 capsid. However, the AAV5-AAVR interface is strikingly different, in which PKD1 is bound at the opposite side of the spike of the AAV5 capsid than the PKD2-interacting region of AAV1. Residues in strands F/G and the CD loop of PKD1 interact directly with AAV5, whereas residues in strands B/C/E and the BC loop of PKD2 make contact with AAV1. These findings further the understanding of the distinct mechanisms by which AAVR recognizes various AAV serotypes and provide an example of a single receptor engaging multiple viral serotypes with divergent rules.


Assuntos
Capsídeo/metabolismo , Dependovirus/fisiologia , Receptores de Superfície Celular/metabolismo , Internalização do Vírus , Capsídeo/ultraestrutura , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/classificação , Dependovirus/genética , Glicosilação , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/ultraestrutura , Sorogrupo , Canais de Cátion TRPP , Transdução Genética
8.
Nat Microbiol ; 4(4): 675-682, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742069

RESUMO

Adeno-associated virus (AAV) is a leading vector for virus-based gene therapy. The receptor for AAV (AAVR; also named KIAA0319L) was recently identified, and the precise characterization of AAV-AAVR recognition is in immediate demand. Taking advantage of a particle-filtering algorithm, we report here the cryo-electron microscopy structure of the AAV2-AAVR complex at 2.8 Å resolution. This structure reveals that of the five Ig-like polycystic kidney disease (PKD) domains in AAVR, PKD2 binds directly to the spike region of the AAV2 capsid adjacent to the icosahedral three-fold axis. Residues in strands B and E, and the BC loop of AAVR PKD2 interact directly with the AAV2 capsid. The interacting residues in the AAV2 capsid are mainly in AAV-featured variable regions. Mutagenesis of the amino acids at the AAV2-AAVR interface reduces binding activity and viral infectivity. Our findings provide insights into the biology of AAV entry with high-resolution details, providing opportunities for the development of new AAV vectors for gene therapy.


Assuntos
Capsídeo/metabolismo , Infecções por Parvoviridae/virologia , Parvovirinae/metabolismo , Receptores de Superfície Celular/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Dependovirus , Interações Hospedeiro-Parasita , Humanos , Parvovirinae/genética , Parvovirinae/ultraestrutura , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 115(51): 13087-13092, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30514821

RESUMO

Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. SVV mediates cell entry by attachment to the receptor anthrax toxin receptor 1 (ANTXR1). Here we determine atomic structures of mature SVV particles alone and in complex with ANTXR1 in both neutral and acidic conditions, as well as empty "spent" particles in complex with ANTXR1 in acidic conditions by cryoelectron microscopy. SVV engages ANTXR1 mainly by the VP2 DF and VP1 CD loops, leading to structural changes in the VP1 GH loop and VP3 GH loop, which attenuate interprotomer interactions and destabilize the capsid assembly. Despite lying on the edge of the attachment site, VP2 D146 interacts with the metal ion in ANTXR1 and is required for cell entry. Though the individual substitution of most interacting residues abolishes receptor binding and virus propagation, a serine-to-alanine mutation at VP2 S177 significantly increases SVV proliferation. Acidification of the SVV-ANTXR1 complex results in a major reconfiguration of the pentameric capsid assemblies, which rotate ∼20° around the icosahedral fivefold axes to form a previously uncharacterized spent particle resembling a potential uncoating intermediate with remarkable perforations at both two- and threefold axes. These structures provide high-resolution snapshots of SVV entry, highlighting opportunities for anticancer therapeutic optimization.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas de Neoplasias/metabolismo , Picornaviridae/fisiologia , Receptores de Superfície Celular/metabolismo , Desenvelopamento do Vírus/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Proteínas dos Microfilamentos , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...